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1. INTRODUCTION

The basic purpose of this experiment is to compute reduced

normal equations from the observational data of the South American

Satellite Densification (PC-1000) Network obtained from the Defense

Mapping Agency Aerospace Center, St. Louis. These reduced normal

equations are to be combined with reduced normal equations of other

satellite networks of National Geodetic Satellite Program [Mueller et

al., 1973] so as to provide station coordinates from a single least

square adjustment.

Details of this network, including instrumentation, are given in

Huber [1971].

2. DATA

2.1 Terrestrial Data

Terrestrial data, which include base-lines, heights and sur-

vey coordinates of stations, provide the necessary relative position

constraints between "collocated" stations of BC-4 World-net and the

South-American Densification Net (Figure 1). Survey information

regarding the observation stations is summarized in Table 2. 1-1.

Constraints used in this solution are given in Tables 2. 1-2, 2. 1-3,

2.1-4 and 2.1-5 [Mueller, et al. 1973]. Geoidal undulations

(Table 2.1-5) are computed by using formula and constants as given

in [Rapp, 1973J.
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Table 2.1-1

S URVE Y IN F 0 RMATI 0 N 0 F 0 BSERVAT IO N S TATI 0 NS

I S T A T I 0 N I DATUMI S U R V E Y C 0 0 R D I N A T E S2 MSL
3  

INSTR. I INSTR. ISOURCE|--- ------------------------ I I ------------------------------------ ------- HEIGHT- --
SNO N A M E I CODEII LATITUDE LONGITUDE IELL. H(M () ( (M) I TYPE I CODE

S

3406 I CURACAO 41 I 12 5 26.843 291 9 45.803 -4.0 6.83 1.25 PC-1000 11 3407 I TRINIDAD 41 I10 44 35.844 298 23 25.652 I 237.0 254.80 1.25 PC-1000 I13413 NATAL 41 - 5 54 56.253 324 49 57.605 63.0 36.90 * PC-1000 I 13414 BRASILIA I 41 -15 51 35.540 312 6 2.679 I1059.0 1058.25 1.14 PC-1000 23431 ASUNCION 41 I -25 18 56.192 302 25 15.376 162.0 149.74 1.65 C PC-1000 2 C3476 PARAMARIBO 41 5 26 54.645 304 47 44.226 8.6 18.27 1.25 PC-1000 13477 BOGOTA 41 4 49 2.379 285 55 35.482 C 2586.0 C 2557.90 1.25 C PC-1000 2

3478 MANAUS I - 3 8 44.820 300 0 59.620 C * I 83.60 C * PC-1000 3I 3499 I QUITO 41 I - 0 5 50.468 281 34 49.212 2706.4 1 2681.80 * PC-1000 1 1S6002 BELTSVILLE 29 39 1 39.003 283 10 26.942 C 45.0 C 44.30 1.50 BC-4 16008 PARAMARIBO 41 5 26 55.325 304 47 42.832 8.7 18.38 1.49 BC-4 16009 QUITO 41 - 0 5 50.468 281 34 49.212 2706.7 2682.10 1.50 BC-4 I16019 VILLA DOLORES 41 -31 56 33.954 294 53 41.342 621.0 1 608.18 I 1.50 I BC-4 26067 NATAL 41 - 5 55 37.414 324 50 6.200 66.7 ( 40.63 * I BC-4A 1
CCII I I I

* INSUFFICIENT DATA

I DATUM CODE :

29 -- NAD 1927
41 -- SAD 1969

2 GEODETIC COORDINATES OF THE INSTRUMENTAL REFERENCE POINT (OPTICAL/ELECTRONIC CENTER#ETC.)
ON THE LOCAL GEODETIC DATUM

3 MEAN SEA LEVEL HEIGHT OF THE INSTRUMENTAL REFERENCE POINT

4 HEIGHT OF INSTRUMENTAL REFERENCE POINT ABOVE SURVEY MONUMENT

5 SOURCE CODE :

1 - (CSC,1971)
2 -- (CSC,1972/73)
3 -- (HUBER,1971)

NOTE : ZERO IN THE LAST DIGIT MAY INDICATE THAT THE DIGIT IS UNKNOWN.



Table 2.1-2

Relative Position Constraints

Relative Coordinates (Meters)
Stations Wigt

Lu Av Aw

3413-6067 -48.64 -289.13 1258.05 3.00

3476-6008 36.31 22.94 -20.80 3.00

3499-6009 0.00 0.00 0.00 100.00

Table 2.1-3

Station Position Constraints

Station Coordinates (Meters) Weights

Stations

u v w Pu Pv pw

6002 1130 764.85 -4830 831.87 3994 704.05 0.2415 0.3425 0.2725

6008 3623 241.00 -5214 233.74 601 536.05 0.2212 0.2591 0. 1163

6009 1280 834.24 -6250 955.94 -10 800.59 0.0776 0.0852 0.0593

6019 2280 627.09 -4914 543.17 3355 402.77 0.1779 0.1366 0.0741

6067 5186 397.12 -3653 933.25 -654 276.92 0.2315 0.2160 0.1464

Weights (1/a a) based as per variances obtained in OSU WN14 Solution [Mueller
et al., 1973]
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Table 2.1-4

Chord Constraint

Station-Station Chord Distance a x 106

(Meters)

6009-6067 4734 132.44 1.00

The chord length and the sigma were computed from the adjusted co-
ordinates of the stations from OSU WN14 Solution [Mueller et al., 1973]

Table 2.1-5

Geoidal Undulations and Heights Used in the Constraints

STATION NREF 1  HCONSTR 2 UHCO

STR

NO. NAME (m) (m) (m)

3406 Curacao -29.19 -41.02 4.0

3407 Trinidad -38.57 194.88 4.0

3413 Natal -12.03 -5.87 6.0

3414 Brasilia -9.88 1021.23 6.0

3431 Asuncion 11.98 137.72 6.0

3476 Paramaribo -28.31 -34.02 6.0

3477 Bogota 10.71 2551.44 6.0

3478 Manaus -7.17 53.63 6.0

3499 Quito 16.73 2682.74 6.0

6002 Beltsville -36.90 -6.73 2.5

6008 Paramaribo -28.31 -33.91 4.0

6009 Quito 16.73 2683.04 6.0

6019 Villa Dolores 22.80 609.43 6.0

6067 Natal -12.03 -2.14 6.0

1. From [Rapp, 1973]
2. HCONSTR = MSL+NREF+ N, where AN is a correction term for the dif-

ferences of position and size of the ellipsoids used [Mueller et al., 1973]
3. Used in Computing the Weights of the Height Constraints
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2.2 Satellite Observational Data

Data of South America Densification Net was obtained from the

Defense Mapping Agency/Aerospace Center, St. Louis, Missouri. This

data, which is a punched card-deck, is used without any modification.

No major blunders are detected. (See Table 2.2-1)

3. THEORETICAL BACKGROUND

3.1 Normal Equations for Optical Observations

A set of reduced normal equations of the form

NX + U = 0

is obtained from the optical observations. The symmetric coefficient matrix

is composed of 3 x 3 blocks of the form [Mueller, 1968]

Nkk = CMlJ - ( 1  M
3X3 j J i

-1 -
3 x3 J i

where

M, = Bj P,1 B

B4. = SR3 (-a) R2 (-900 + 6) 0 -cos6

0 0 -1

S = Polar motion matrix

and

k,1 Denotes particular ground stations

J Denotes particular simultaneous event

i Denotes any ground station participating in an event

F Is the summation over all ground stations involved in event i

SIs the summation over all events observed by ground station
k and/or 1

Pk Weight matrix associated with any particular ground station
3x3

P, Weight matrix of any observed direction
3x3

6



Table 2.2-1

Summary of Simultaneous Observations by Line (SA Network)

Line Line
Station-Station No. of Pairs Station-Station No. of Pairs

6002-6008 23 3406-3478 14
6002-3406 14 3406-3499 4
6002-3407 11 3407-3431 16
6002-3476 7 3407-3476 19
6002-3477 7 3407-3477 23
6008-6009 10 3407-3478 9
6008-6019 36 3413-3414 29
6008-6067 14 3413-3431 2
6008-3406 26 3414-3431 22
6008-3477 3 3476-3477 15

6008-3478 6 3477-3478 2
6009-6019 7 3477-3499 5
6009-3406 14
6009-3407 6
6009-3476 6
6009-3477 5
6009-3499 9
6019-6067 35
6019-3406 19
6019-3407 38

6019-3431 4
6019-3476 19
6019-3477 6
6067-3407 3
3406-3407 9
3406-3413 25
3406-3414 41
3406-3431 53
3406-3476 20
3406-3477 13

'7



Finally, the vector of constant terms is expressed by

Uk kMk [X - (CM ) M 1 X]

where as usual, the superscript (0) denotes initial approximate values.

3.2 "Constraints" Contributions to the Normal Equations

3.21 General

Since the coefficient matrix of normal equations is singular, a unique

least squares solution is not possible. A minimal set of constraints to the

normal equations provides a unique solution [Blaha, 1971].

Two alternative definitions exist for the term "constraints". The

absolute constraints represent certain conditions which have to be fulfilled

exactly and with no uncertainties while the relative constraints (or weighted

constraints) have the same characteristics as the observations.

In general the contribution of the functional constraint equations

G(X, L) = 0

to the normal equations can be found by bordering the normal equations matrix

N C' X U

0W =, where C - GC -P -Kc W'X "

After elimination of Kc , it is easy to find

N + C'Pc C]X + U + C'Pc W c = 0

or

[N + Nc X + U + Uc = 0 (1)

where Nc and Uc are the contributions to the coefficient matrix and constant

vector of the normal equations due to the application of constraints. The

quantities N and U correspond to the original normal equations without con-

straints (Section 3.1).

After the constraints are added the normal equations will take the

usual form

NX + U = 0

and we are in the position to obtain the contribution from a new set of

constraints.
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Constraints can be applied between two station k and 1 or to a single

station. The contribution of these constraints to the matrix N (3 x 3) blocks)

and U (3 x 1 blocks) can be schematically expressed in two different ways.

Assuming that the matrix PC is always diagonal it is possible to

express:

(a) Contribution to the normals due to the constraint applied to station k

PC CK W,

i

(b) Contribution to the normals due to the constraint between stations k and 1

Pc CK C 1  Wc

C. -i U N:, =C: PC CK ; N K1 = c, p C1

CU (2b)

These blocks obtained as indicated above for the corresponding case

will be the only ones computed and added to the original normal equations as

expressed by formula (1).



3. 22 Relative Position Constraints

Relative position constraints are used in order to combine the normal

equations obtained from various satellite nets and to constrain "double" sta-

tions or closely situated stations of the same net. The expression for the

combination of normals can be written as follows:

[N+N ] X+U+U ' = 0

where NR and UR ' computed from (2a), (2b), are the contribution to the ori-

ginal normal equations (NX + U = 0).

If the relative position (Auo , Av ° , Awo ) of two stations is known,

along with the standard deviation of these relative positions, the constraints

can be formed. In this case the functional constraint equations are

v u o = Avo

0 0

Wk - wv = Aw

Therefore

Ck I C 1  -I
3XS 3X3 3X3 3X3

and

Uk = 0 ; UO 0 because WR = GR (XO, LO) = 0
3CI 3XI

where

1 00

PR = 0 1 0

agP

0 0 1

a~w o

10



and

IVK = I PI = PR
3x3 3x3

NJ I =I AI=Ip
3x3 3x3

3x3 3x3 3x3

Thus, the diagonal elements of 1 are added to each element of the diagonal

of the blocks K K and I 1 of the matrix of the combined normals N, and sub-

tracted from the diagonal elements of the blocks K 1 and 1K of N. There is

no contribution to the vector U.

3.23 Length (Chord) Constraints

Chord constraints are introduced when scalar information is avail-

able between ground stations (e.g., distances determined through high pre-

cision geodimeter traversing). The functional constraint equation in this case

is

GC (X, I) = 0

or

[( - u)2 + (VK - v)2 + (wK -wl)2] =  (3)

= -u , v - v , W -W

and

and

and
2

-1 K variance of the chord

S= a priori variance of unit weight

Then the contribution to the normals are obtained by applying (2a) and (2b)
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as under:

NKK = (C)' Pc CK
3x 3

N = (Ci)' C
3x

3

NK = (C)' Pc c
3x3

if (C,)KPc WC
3x3

= (C)' P W
3x3

The first three expressions in the above are added respectively to

the blocks NKK , N1 1 and NKI of N; the last two expressions are added

respectively to the constant vectors UK and U1 of U.

3.24 Station Position Constraints

Station position constraint is used for the purpose of defining the

origin of the coordinate system. If the station coordinates (ut, v2, WK) of

station K are to be constrained and if the computed (known) variances of its

known coordinates are a, , a 2, then the equations given in section
uk' Vk Uk

3.22 are valid by merely deleting the terms with index 1, i.e., Auo = u,

Av0 = v ° , Aw = w,. Hence

Ns = I Ps I Ps
3X3 3 X3

where

UK

Ps= 0 ao 0

0 0 U2
0WK

12



3.25 Height Constraints

If the geodetic (ellipsoidal) heights HK of the station K is to be con-

strained, then

NKK = (C )' P. CK
3 x3

where

CK = [cos,' cosXK~, costPK sinXK, sin(p]
1x3

and
1

Here PK and XKl are the approximate geodetic coordinates and oK is the

variance of the height for station K.

The constant vector UKH can be computed from

U = (C )' PH WH

where

W = HK - H , HK being the approximate height.

3.26 Inner Constraints (Free Adjustment)

Even though the selection of a coordinate system is arbitrary in the

case of a minimum constraint adjustment, e.g., in the case of ranging, the

selection of the six coordinates (at more than two stations) to be constrained

is very critical, since one set of constraints would give a different solution

than another set. The "best" solution is arrived at in a coordinate system

defined through the use of a set of constraint equations called "inner" con-

straints [Rinner et al., 1967]. In this sense, "best" means resulting in

the smallest covariance matrix for the unknowns. Covariance matrices may

be compared by means of their traces, and the inner constraint equations

are characterized by the property that the trace of the covariance matrix

obtained with their use is a minimum among those obtained by adjusting a

given set of observations augmented by a minimal set of constraint equa-

tions. This property also implies that the mean square uncertainty of the

13



unknowns is smaller when the inner adjustment equations are used. The re-

sulting adjustment is called a "free" one. The functional inner constraints

equations can be written as

cIx = 0

where X is the set of corrections of the approximate coordinates of the un-

known points and in the most general application when the "best" origin,

orientation and scale are sought

1r 00 .0 0 -
= C2  - 0 u w u2

0 0 I 0 W

0 0

1 c -- --.. w-o - ... va --- ----

The symbols (uk, v° , w ) denote the approximate coordinates of the ith

unknown point where both the ground points and the satellite positions are

considered.

It is also possible to design a set of constraints that will result in

the "best" solution for only a subset of the points. In the adjustment

reported here we were only interested in the gound station unknowns imply-

ing that the trace of only that portion of the covariance matrix correspond-

ing to the ground station unknowns should be minimized, while the variances

of the satellite position unknowns should not be included in the minimum sum.

The constraint equations that will produce such a solution have the same

form as those producing the "best" solution for all the points; however,

3 x 3 blocks of zeros are inserted into those positions of I which corres-

pond to unknowns whose variances are not to be included in the minimum sum.

The inner adjustment constraint equations can be given a geometrical

interpretation that appeals to intuition. Let X? denote the set of approxi-

mate coordinates of the ith unknown point, dXi1 denote the corrections to

14



these coordinates, and Xi denote the adjusted coordinates, i.e.,

X, = X' + dXI

The first set of constraint equations, C X = 0, is then equivalent to the

set of conditions

SdXI = 0

The geometrical interpretation of these conditions is that the center of

gravity of all the points will not change after adjustment, i.e.,

SX x dXi = 0

If the center of the system remains fixed, then the cross products Xi x dXi

reflect rotations of the points around the fixed center. These constraint

equations insure that the sums of the rotations around all three coordinate

axes are zero. The corresponding geometrical interpretation is that the

mean orientation of the system of points will not change after adjustment

either.

Thus, the respective equations C X = 0 and C1 X = 0 effectively

specify the origin and the orientation of the adjustment coordinate system.

A third "inner adjustment" equation C3X = 0 specifies the scale of the

system. However, this scale equation is only used when the observations

themselves do not determine the scale.

A more complete description of the inner adjustment is described

in [Blaha, 1971].

In summary, if the normal equations with the contribution of all the

constraints (except inner constraints) are represented by

~ + N + NC + N + N ]X + +U + U + U + = 0 (5)

or

NX + U=0

then the inner adjustment can be obtained by bordering the coefficient matrix

N of the normal equations as

N (CI)[' ]

C 1K 0 (6)

15



Upon the addition of any kind of constraint to the normal equations,

it becomes necessary to consider also its contribution to Z V'PV. The de-

grees of freedom change as well. In order to compute the proper variance

of unit weight the latter must be taken into consideration.

4. THE SOLUTION

Using the specified constraint of Section 3.2, SA-10 solution is com-

puted. A general information of this solution is given in Table 4-1. The

solution is obtained by using the general OSUGOP program (Reilly et al.,

1972].

The station coordinates of SA-10 solution are given in Table 4-2 with

their standard deviations.

Table 4-1

General Information on the SA-10 Geometric Adjustment

No. of observing stations 14

-, (a priori) 1.0

No. of degrees of freedom 649

EV'PV 721.76

0 (a posteriori) 2.50

Number of constraints used:

Relative position constraints 3

Length (Chord) constraint 1

Station position constraints 5

Height constraints 14

Inner constraint defines the
origin of the coordinate system.

16



Table 4-2

Cartesian and Geodetic Coordinates

(Solution SA 10)

Sta. No. u ou v 0v w ow

a. A. ra
ab Ab rb

ac Ac rc

u, v, w Cartesian coordinates in meters (Orientation: u = the Greenwich
meridian as defined by the B.I.H.; v = X = 900 (E); w = Con-
ventional International Origin).

so , Geodetic latitude and longitude in angular units (degrees, min-
utes and seconds of arc) computed from the Cartesian coordin-
ates and referred to a rotational ellipsoid of a = 6378155.00m
and b = 6356769.70 m.

H Geodetic (ellipsoidal) height in meters referred to the same
ellipsoid.

,a6v ,0 w Standard deviations of the Cartesian coordinates in meters.

,p IX Standard deviations of the geodetic coordinates in seconds of
arc.

(H Standard deviations of the geodetic height in meters.

a , Aa ,ra Altitude (elevation angle), azimuth and magnitude of the major
semi axis of the error ellipsoid, respectively. Angles in de-
grees, magnitude in meters. Altitude is positive above the
horizon. Azimuth is positive east reckoned from the north.

ab , Ab ,rb Same as above for the mean axis of the error ellipsoid.

ac , Ao, re Same as above for the minor axis of the error ellipsoid.

17



Table 4.2 (Con't)

3406 2251789.08 5.57 -5 16902.96 3.94 1327210.38 7.37
? 5 26.57 0.74 291 9 43.15 0.20 -46.08 3.5

8.88 -32.18 8.16
-5.04 57.03 4.83
79.77 -62.24 3.33

3407 2979880.94 7.18 -5513533.18 4.49 1181 138.43 6.20
10 44 35.20 0.20 298 23 23.08 0.25 185.59 3.71

-3.40 118.77 8.31
20.28 30.03 5.44

-69.41 19.66 3.37

3413 5186345.51 2,00 -3654218.56 7.10 -653018.68 2.71
- 5 54 57.55 0.09 324 49 55.45 0.07 -4.76 1.97

-3.79 3.66 2.71
-8.55 94.23 2.14
80.64 69.95 1.96

3414 4114977.26 7.50 -4554124.02 5.71 -1732149.84 7.17
-15 51 37.37 0.24 312 6 0.26 0.27 1002.05 4.88

2.88 50.36 9.10
-11.13 -39.07 5.84
-78.50 126.06 4.82

3431 3093028.20 7.17 -4870063.97 6.08 -2710839.99 10.51
-25 18 58.25 0.36 302 25 12.20 0.26 130.54 4.94

-5.20 11.62 11.19
-1.83 101.79 7.07

-84.48 -148.88 4.85

3476 3623275.84 2.14 -5214202.28 1.87 601517.56 2.84
5 26 52.81 0.09 304 47 41.51 0.07 -39.47 1.81

3.15 -6.32 2.85
10.83 84.28 2.20

-78.72 67.69 1.79

18



Table 4.2 (Con't)

3477 1744632.76 9.75 -6114278.13 6.57 532213.19 9.76
4 49 0.44 0.32 285 55 31.56 0.34 2542.42 5.37

-2.76 47.57 13.26
-43.15 140.16 5.79
46.72 134.64 4.90

3478 3185743.08 11.19 -5514590.21 9.39 -347640.88 20.43
- 3 8 43.73 0.67 300 0 53.09 0.43 36.97 5.75

-0.19 -30.23 23.24
-21.96 ' 59,85 7.91
68.04 59.31 5.31

3499 1280825.47 2.99 -6250950.21. 2.60 -10793.24 4.01
- 0 5 51.25 0.13 281 34 46.84 0.10 2676.43 2.61

2.51 14.32 4.07
10.43 104.78 2.90

-79.26 90.96 2.60

6002 1130763.54 2.10 -4830831.02 1.63 3994704.49 1.86
39 1 39.39 0.06 263 10 27.00 0.09 -7.30 1.54

1.79 105.75 2.11
11.74 15.38 1.93

-78.12 24.27 1.52

6008 3623239.59 2.07 -5214231.39 1.79 601538.31 2.79
5 26 53.49 0.09 304 47 40.11 0.07 -39.20 1.74

3.25 -5.65 2.80
11.07 84.98 2.12

-78.46 68.21 1.71

6009 1280825.47 2.99 -6250950,22 2.59 -10793.24 4.01
- 0 5 51.25 0.13 281 34 46.84 0.10 2676.43 2.61

2.51 14.32 4.07
10.48 104.78 2.90

-79.22 91.01 2.59

6019 2280626.58 2.43 -4914540.71 2.64 -3355401.90 3.65
-31 56 34.95 0.11 294 53 38.34 0.10 603.72 2.77

-24.10 -0.19 3.67
-46.19 117.61 2.63
33.99 72.26 2.41

19



Table 4.2 (Con't)

6067 5186394.24 1.92 -3653929.59 2.03 -654276.72 2.64

- 5 55 38.71 0.09 324 50 4.04 0.07 -0.90 1.90

-3.90 3,53 2.65
-11.21 94.31 2.06
78.11 74.64 1.89

In the tables the rotations L4 b, and E are about the w, v, and a

axes, respectively. The scale factor A is in units of ppm. The unit in the

variance-covariance matrix, for the elements corresponding to the rotations,

is radian squared.

5. COMPARISON WITH OTHER SOLUTIONS

Table 5. 1-1 summarizes the transformation parameters between

SA 10 and South American 1969 Datum, and Table 5.1-2 between SA 10

and WN14 Solution [Mueller et al., 1973].

20



Table 5.1-1

SA10 -TO- SAD-69
*************************

SCALE FACTOR AND ROTATION PAAMETERS CONSTRAINED

"SOLUTION FOR 3 TRANSLATION, 1 SCALE AND 3 :ROTATION PARAIM ETFRS

(USING VARIANCFS ONLY)

DU DV DW DELTA OMEGA PSI FP5ILON
METERS METERS METERS (X1.0+6) SECONDS SECONDS SEC O DS

50.65 16.52 36.33 5.80 -0.79 0.12 0.21

VARIANCE - COVARIANCE MATRIX

2ao = 1.13

0.857D+02 0.5840+01 0.106D+02 -0.447D-05 0.967D-05 -0.277D-05 -0.1260-0"

0.584D+01 0.749D+02 0.186D+01 0.738D-05 0.564D-05 -0.358D-06 0.1300-05

0.1060+02 0.186D+01 0.923D+02 0.137D-05 0.1610-05 -0.644D-05 -0.9790-05

-0.447D-05 0.738D-05 0.137D-05 0.145D-11 0.7210-14 0.31oD-14 0.11OD-13

0.967D-05 0.564D-05 0.161D-05 0.721D-14 0.187D-11 -0.268D-12 -0.152D-12

-0.2770-05 -0.358D-06 -0.644D-05 0.319D-14 -0.2680-12 0.1360-11 0.440D-12

-0.126D-05 0.1300-05 -0.979D-05 0.1100-13 -0.1520-12 0.4400-12 0.1680-11

COEFFICIENTS OF CORRELATION

0.100D+01 0.730D-01 0.1190+00 -0.4010+00 0.7640+00 -0.2570+00 -0.105D+00

0.7300-01 0.1000+01 0.2240-01 0.7080+00 0.476D+00 -0.355D-01 0.116D+00

0.1190+00 0.224D-01 0.100D+01 0.118D+00 0.122D+00 -0.576D+00 -0.78FD+00

-0.4010+00 0.708D+00 0.1180+00 0.100D+01 0.4380-02 0.2270-02 0.705D-02

0.7640+00 0.4760+00 0.122D+00 0.438D-02 0.1000+01 -0.168D+00 -0.856D-01

-0.257D+00 -0.3550D-01 -0.576D+00 0.2270-02 -0.168D+00 0.1000+01 0.292,+00

-0.105D+00 0.116D+00 -0.7880+00 0.7050D-02 -0.856D-01 0.292D+00 0.1000+01
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Table 5.1-1 (Con't)

RESIDUALS V

V1( SAIO ) V2( SAD-69 ) i - V2
------------- --- ------------

3414 0.4 -2.8 1.3 3414 -0.7 .8.5 -2.6 1.2 -11.3 3.9

3431 3.0 -0.1 7.8 3431 -5.0 0.3 -7.1 9.0 -0.4 14.9

3477 17.7 0.9 8.3 3477 -18.7 -2.1 -8.7 36.4 3.1 16.9

6008 -0.2 0.3 1.0 6008 3.8 -8.2 -12.5 -4.0 8.4 13.5
6009 -0.9 -0.3 -2.6 6009 10.0 4.9 16.4 -10.9 -5.2 -19.0

6019 -0.4 0.5 -0.9 6019 7.4 -7.3 7.1 -7.8 7.8 -6.1

6067 -0.2 -0.2 -0.5 6067 4.1 3.9 7.3 -4.3 -4.0 -7.8
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Table 5.1-2

SA10 -TO- WN14

SCALE FACTOR AND ROTATION PARAMETERS CONSTRAINED

SOLUTION FOR 3 TRANSLATION, 1 SCALE AND 3 ROTATION PAPAMFTERS

(USING VARIANCES ONLY)

DU DV DW DELTA OMEGA PSI EPSILON
METERS METERS METERS (X1.D+6) SECONDS SECONDS SECONDS

1.63 -7.78 -4.92 -0.44 -0.13 0.07 0.10

VARIANCE - COVARIANCE MATRIX

a, = 0.92

0.365D0+01 0.5210+00 0.8800+00 -0.1710-06 0.4030-06 -0.339D-07 -0.134D-06

0.521D+00 0.3150+01 0.4620+00 0.244D-06 0.286D-06 -0.304D-07 -0.120D-06

0.8800+00 0.4620+00 0.3630+01 -0.444D-07 0.1620-06 -0.168D-06 -0.2770-06

-0.1710-06 0.2440-06 -0.444D-07 0.5050-13 -0.155D-15 0.390D-15 0.351D-15

0.403D-06 0.2860-06 0.1620-06 -0.1550-15 0.856D-13 -0.8840-14 -0.284D-13

-0.339D-07 -0.304D-07 -0.1680-06 0.390D-15 -0.884D-14 0.4310-13 0.740D-14

-0.134D-06 -0.120D-06 -0.2770-06 0.351D-15 -0.2840-13 0.7400-14 0.535D-13

COEFFICIENTS OF CORRELATION

0.100D0+01 0.1540+00 0.2420+00 -0.3980+00 0.7200+00 -0.8550-01 -0.3020+00

0.1540+00 0.100D+01 0.137D+00 0.6120+00 0.5510+00 -0.8250-01 -0.292D+00

0.242D+00 0.137D+00 0.100D+01 -0.104D+00 0.291D+00 -0.4240+00 -0.629D+00

-0.398D+00 0.6120+00 -0.104D0+00 0.100D+01 -0.2360-02 0.835D-02 0.675D-02

0.720D+00 0.5510+00 0.291D0+00 -0.2360-02 0.100D+01 -0.145D+00 -0.420D+00

-0.8550-01 -0.8250-01 -0.4240+00 0.8350-02 -0.1450+00 0.1000+01 0.1540+00

-0.30?D+00 -0.2920+00 -0.629D+00 0.6750-02 -0.420D000 0.1540+00 0.1000+01
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Table 5.1-2 (Con't)

RESIDUALS V

V1( SAIO ) V2( WN14 ) VI - V2

3406 6.6 -5.3 -14.5 3406 -1.2 1.5 3.0 7.8 -6.7 -17.6
3407 4.9 3.5 -4.3 3407 -2.1 -1.9 3.1 7.0 5.4 -7.4
3413 0.1 -0.2 1.0 3413 -0.1 0.3 -0.9 0.2 -0.5 1.9
3414 -1.4 -6.6 -1.2 3414 1.5 7.6 1.2 -2.9 -14.2 -2.4
3431 6.3 -5.8 9.1 3431 -7.1 6.7 -9.7 13.3 -12.5 18.8
3476 -0.8 0.3 -0.3 3476 0.8 -0.4 0.3 -1.7 0.7 -0.6
3477 6.6 -2.3 -1.5 3477 -7.2 2.4 1.4 13.8 -4.7 -2.0
3478 8.0 2.4 -15.4 3478 -22.4 -5.8 45.4 30.4 8.? -60.7
3499 2.0 -0.5 -2.8 3499 -2.9 0.9 2.9 4.9 -1.4 -5.7
6002 -0.5 0.7 1.1 6002 0.5 -0.8 -1.1 -1.0 1.5 2.2
6008 -0.8 0.4 -0.3 6008 0.9 -0.5 0.3 -1.7 0.8 -0.6
6019 -1.8 1.6 0.5 6019 1.7 -1.7 -0.5 -3.5 3.4 1.1
6067 0.1 -0.2 0.9 6067 -0.1 0.2 -0.9 0.1 -0.3 1.9
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